Quadratic operator relations and Bethe equations for spin-1/2 Richardson–Gaudin models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bethe equations for generalized Hubbard models

We compute the eigenfunctions, energies and Bethe equations for a class of generalized integrable Hubbard models based on gl(n|m)⊕ gl(2) superalgebras. The Bethe equations appear to be similar to the Hubbard model ones, up to a phase due to the integration of a subset of ‘simple’ Bethe equations. We discuss relations with AdS/CFT correspondence, and with condensed matter physics.

متن کامل

Bethe ansatz equations for open spin chains from giant gravitons

We investigate the open spin chain describing the scalar sector of the Y = 0 giant graviton brane at weak coupling. We provide a direct proof of integrability in the SU(2) and SU(3) sectors by constructing the transfer matrices. We determine the eigenvalues of these transfer matrices in terms of roots of the corresponding Bethe ansatz equations (BAEs). Based on these results, we propose BAEs fo...

متن کامل

Common framework and quadratic Bethe equations for rational Gaudin magnets in arbitrarily oriented magnetic fields

In this work we demonstrate a simple way to implement the quantum inverse scattering method to find eigenstates of spin-1/2 XXX Gaudin magnets in an arbitrarily oriented magnetic field. The procedure differs vastly from the most natural approach which would be to simply orient the spin quantisation axis in the same direction as the magnetic field through an appropriate rotation. Instead, we def...

متن کامل

Quadratic $alpha$-functional equations

In this paper, we solve the quadratic $alpha$-functional equations $2f(x) + 2f(y) = f(x + y) + alpha^{-2}f(alpha(x-y)); (0.1)$ where $alpha$ is a fixed non-Archimedean number with $alpha^{-2}neq 3$. Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of the quadratic $alpha$-functional equation (0.1) in non-Archimedean Banach spaces.

متن کامل

Quantum Strings and Bethe Equations

Recently there has been a lot of effort to shed more light on the AdS/CFT duality conjecture by using the idea of exact integrability. On the gauge theory side this includes elucidation of integrable properties of the dilatation operator of the planar N = 4 SYM at the leading [1, 2] and higher orders [3] of perturbation theory (see also [4] for earlier account of integrable structures in QCD). ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical

سال: 2018

ISSN: 1751-8113,1751-8121

DOI: 10.1088/1751-8121/aaccb4